DRIVE
Data-driven and genome-edited breeding of locally adapted wheat varieties to enhance agricultural biodiversity, sustainable climate resilience, and resource efficiency
Term
2024-11-01 bis 2028-10-31
Project management
- Philipp, Schulz
- Kerstin, Flath
Responsible institute
Institut für Pflanzenschutz in Ackerbau und Grünland
Cooperation partner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.
- Max-Planck-Institut für Molekulare Pflanzenphysiologie
- KWS Lochow GmbH
- W. von Borries-Eckendorf GmbH & Co. KG
- Deutsche Saatveredlung AG
- infotraX GmbH
- Gemeinschaft zur Förderung von Pflanzeninnovation e. V.
- Secobra Saatzucht GmbH
- Saatzucht Streng-Engelen GmbH & Co. KG
- RAGT 2n -France
- Nordic Seed
- Technische Universität München
Overall objective of the project
Data science augments many economic and scientific activities. Plant breeding has not been one of them yet. That is because crop scientists lack Big Data, curated and machine-readable datasets large enough for artificial intelligence (AI) to crunch. The DRIVE project will implement a data trusteeship platform populated with one of the world’s most comprehensive Big Data in crops, to facilitate data-driven breeding of climate and locally-adapted wheat varieties. Results from large-scale allele mining will be used for genome editing to combat biotic stress factors with putative resistance genes discovered in genetic wheat resources lost in elite breeding.
Funder
Federal Ministry of Education and Research